If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+8x-22=0
a = 6; b = 8; c = -22;
Δ = b2-4ac
Δ = 82-4·6·(-22)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{37}}{2*6}=\frac{-8-4\sqrt{37}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{37}}{2*6}=\frac{-8+4\sqrt{37}}{12} $
| t^2-8t+8=0 | | 6(7+3y)=8(12y-2) | | q–15=-14 | | 3x-4-7x-8=6x | | -p=10 | | x–13=–4 | | 5(0.2-c)=2.66666666666 | | 4(7-3/4x=1/2x-3) | | 10w-2=8w+8 | | w-3= -10 | | 5(0.2-c)=2.6 | | 10=s+13 | | 2x3-x2-3x-1=0 | | 16-7n+5=8n-10 | | a+1/3*a=0 | | 1/2(6x+3)-8x-3x-9=13/2 | | 3-4v=-2v-3 | | X+15x=34.50 | | d9= 9 | | X=27-(3a/2) | | 4(4-w)=3(2w+4) | | (6v+5)(v+4)=0 | | g–85=-15 | | -5d=-80 | | 430/1500=x/75000 | | -2–5f=-6f–9 | | 18-5y=y=4 | | 3(4x+8)=-10 | | x+x/2-x/3=5 | | 69x+25x=350+25x | | q+-13=-19 | | -7y-9=-8y |